
INHALT

- Einleitung
- 2. Genehmigtes Projekt 2009
 - 2.1 Tunnelsystem
 - 2.2 Instandhaltungskonzept
- 3. Projektstand 2013
 - 3.1 Projektoptimierungen . Schwerpunkt Bauwerk
 - 3.2 Tunnelsystem
 - 3.3 Projektoptimierungen . Schwerpunkt Ausrüstung
 - 3.4 Instandhaltungskonzept auf Basis Projektstand 2013
- Umsetzung der in Hinblick auf die Instandhaltung entwickelten Maßnahmen und Festlegungen

SCAN-MED Korridor

Kernstück der Alpenquerung, der Brenner Basistunnel (BBT)

Zielvorgabe: Erstellung nachhaltiger Verkehrsinfrastrukturanlagen

- sichererer Betrieb bei hoher Verfügbarkeit
- geringer Instandhaltungsaufwand
- geringe Betriebskosten

Die Betriebsführung

definiert die Anforderungen und Vorgaben an

- das Bauwerkskonzept
- > die Konfiguration der technischen Ausrüstung

der Infrastrukturanlage

Komplexität des

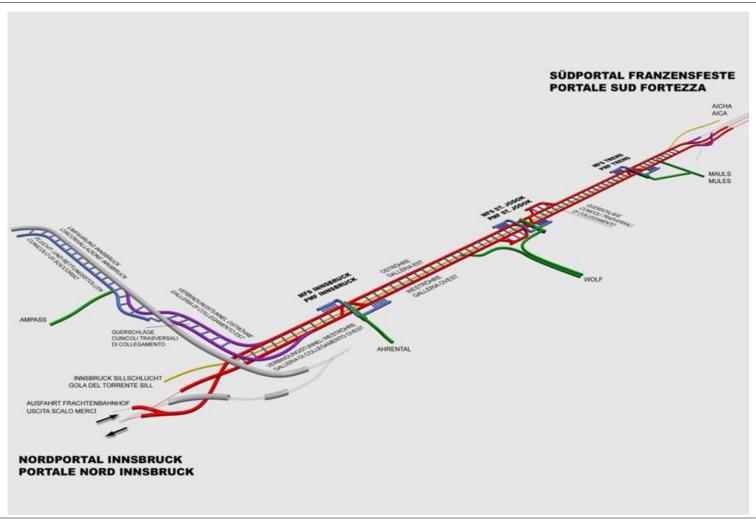
Bauwerkskonzeptes und der Ausrüstungskonfiguration

Höhe des Instandhaltungsumfanges und - aufwandes

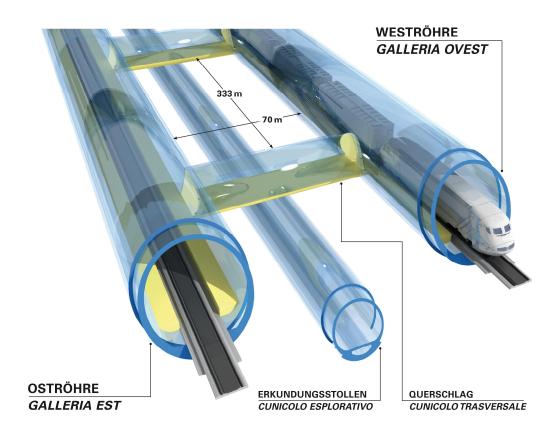
Interdisziplinärer Planungsprozess

- Betriebsführung
- Bautechnik
- Bahntechnische Ausrüstung

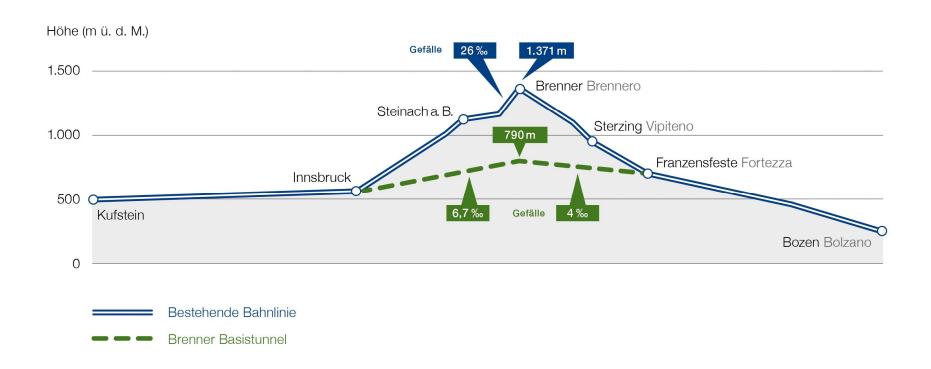
Entwicklung von Projektoptimierungen


- Vereinfachung des Bauwerkskonzeptes (Tunnelsystems)
- Reduktion der Anlagendichte und Typenvielfalt

Grundlage für ein optimiertes Instandhaltungskonzept


2.1 TUNNELSYSTEM

2.1 TUNNELSYSTEM



Gelleris di Rege del Frances Wenner Statistumet DUTSE

2.1 TUNNELSYSTEM

Höhenprofil Brennerbahn / Brenner Basistunnel

2.1 TUNNELSYSTEM

Eckdaten Brenner Basistunnel

Länge Brenner Basistunnel (inkl. Umfahrung Innsbruck) Portal Tulfes bis Portal Franzensfeste	64 km
Länge Brenner Basistunnel Portal Innsbruck bis Portal Franzensfeste	55 km
Maximale Gebirgsüberlagerung	1.800 m
Innendurchmesser Haupttunnel	8 m
Längsneigung	4,0 ‰ - 6,7 ‰
Entwurfsgeschwindigkeit Güterverkehr	120 km/h
Entwurfsgeschwindigkeit Personenverkehr	250 km/h

Nothaltestellen (Innsbruck, St. Jodok, Trens)	3
Ausbruchsmaterial	17 Mio. m³
Vortriebsmethoden	30% Sprengvortrieb 70% Tunnelbohrmaschine (TBM)
Bahnstromversorgung	25 kV 50 Hz
Zugsicherungssystem	ETCS Level 2
Fertigstellung	2026
Eröffnung	2027

Golferia di Repe del Prennaro Urennes Dasistennes Duri SE

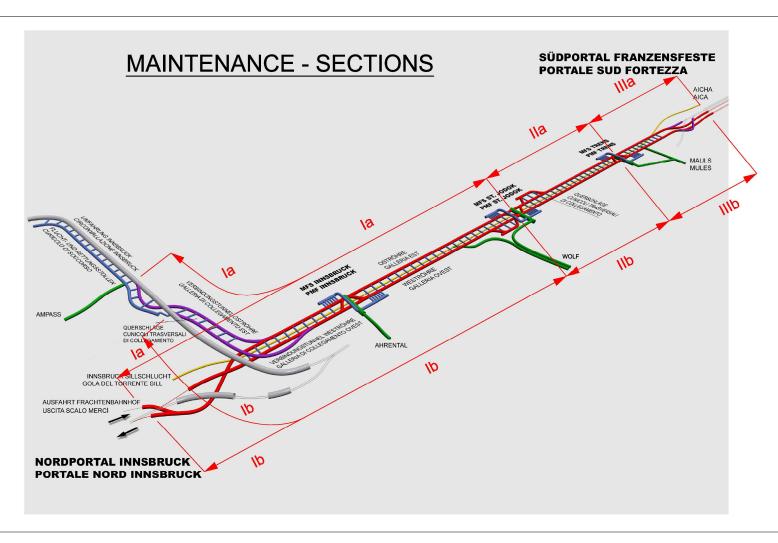
2.2 INSTANDHALTUNGSKONZEPT

Grundsatz

Tunnelabschnitte, in denen Instandhaltungsmaßnahmen durchgeführt werden, sind für den Betrieb gesperrt

Instandhaltungsabschnitte

Abschnitt 1: Portale Innsbruck / Tulfes bis


Multifunktionsstelle (MFS) St. Jodok

Abschnitt 2: MFS St. Jodok bis MFS Trens

Abschnitt 3: MFS Trens bis Portale Franzensfeste

2.2 INSTANDHALTUNGSKONZEPT

Gallaria di Riva del Rivannaro Diremes Dasistemnel BUT SE

2.2 INSTANDHALTUNGSKONZEPT

Instandhaltungszentren: Bahnhofsbereiche Innsbruck Franzensfeste

Reguläre Sperrzeiten

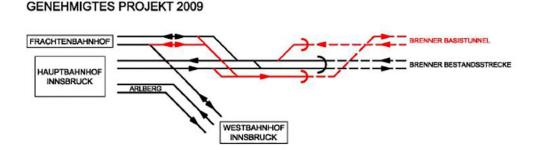
Montag: 4 (2) h

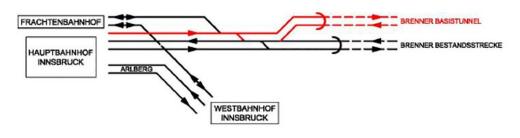
" Dienstag bis Donnerstag: 2 h

" Freitag: 2 (4) h

" Samstag und Sonntag: 4 h

wöchentliche Sperrzeit: 20 Stunden.


Die Zufahrt der Instandhaltungstrupps zur Arbeitsstelle erfolgt schienengebunden.

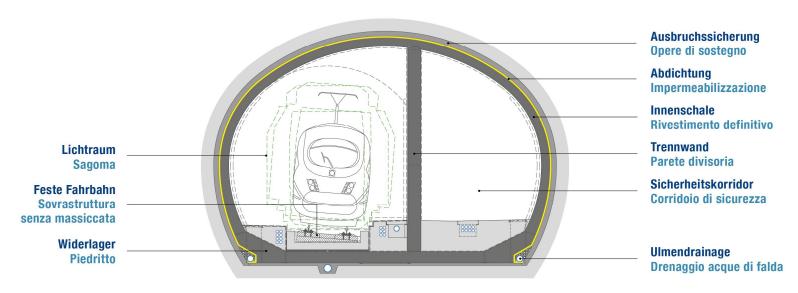

3.1 PROJEKTOPTIMIERUNGEN Ë SCHWERPUNKT BAUWERK

Neue Trassenführung im Bereich Einbindung Hbf. Innsbruck

- ✓ Vereinfachung der bautechnischen Komplexität
- ✓ Vereinfachung der Betriebsführung
- ✓ Entfall der Überwerfung der Haupttunnel und der überlangen Querschläge und Notausgänge
- ✓ Entfall der Sillunterquerung durch die Haupttunnelröhre Ost
- ✓ Reduktion der Tunnellängen

PROJEKTSTAND 2013

Galleria di Risse del Framero urenor Uasistrunol DUT SI.

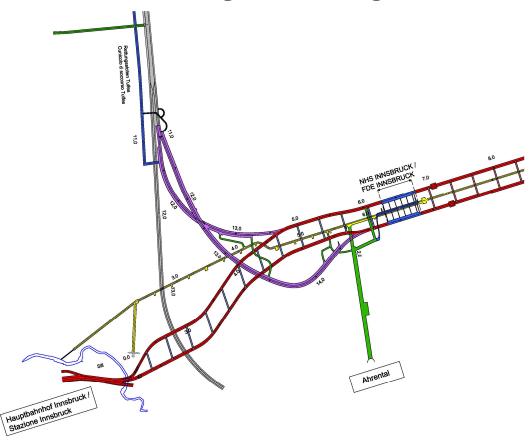

3.1 PROJEKTOPTIMIERUNGEN Ë SCHWERPUNKT BAUWERK

Neuer Tunnelquerschnitt im Bereich Einbindung Umfahrung lbk.

Querschnitt Verbindungstunnel

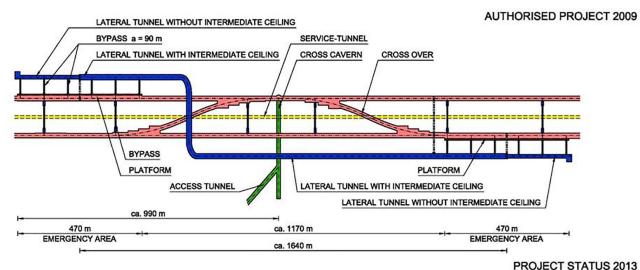
Sezione gallerie di interconnessione

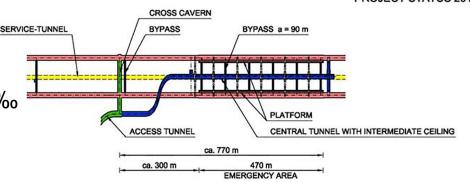
Neugestaltung des Querschnittes der Verbindungstunnel - seitlicher Fluchtstollen anstelle der Querschläge -



3.1 PROJEKTOPTIMIERUNGEN Ë SCHWERPUNKT BAUWERK

Neue Trassenführung im Bereich Einbindung Umfahrung Ibk.


- ✓ Nutzung des bestehenden 2 2- gleisigen Anschlusses für den BBT
- ✓ Weichenanordnung beim Abzweig Ahrental berücksichtigt die Hauptlastrichtung
- ✓ Anordnung von
 Evakuierungstollen
 zwischen den
 Verbindungstunneln und
 dem Zugangstunnel
 Ahrental


Gelleris di Ruse del Pransuro Urcuner Ussistrumel DUT SE

3.1 PROJEKTOPTIMIERUNGEN Ë SCHWERPUNKT BAUWERK

Optimierung der Multifunktionsstellen

Entflechtung der Funktionen sÜberleitstelle‰nd sNothaltestelle‰

3.1 PROJEKTOPTIMIERUNGEN Ë SCHWERPUNKT BAUWERK

Weitere Optimierungen

- ✓ Reduktion der Anzahl von Überleitstellen und Verzicht auf die Überholgleise
- ✓ Reduktion Anzahl der Bahntunneltore von 15 auf 4
- ✓ Reduktion Anzahl Weichen von 26 auf 6
- ✓ Reduktion der Tunnellänge insgesamt
- ✓ Vereinfachung der Anlagen für die Betriebslüftung

3.2 TUNNELSYSTEM

SÜDPORTAL FRANZENSFESTE PORTALE SUD FORTEZZA Tunnel . Gesamtlänge: 230 km davon ausgebrochen: ca. 119 km NOTHALTESTELLE TRENS FERMATA DI EMERGENZA CAMPO DI TRENS MULES NOTHALTESTELLE ST. JODOK FERMATA DI EMERGENZA ST. JODOK PADASTERTAL NOTHALTESTELLE INNSBRUCK FERMATA DI EMERGENZA INNSBRUCK LEGENDE LEGENDA Haupttunnelröhren Gallerie di linea Seitliche Zufahrtstunnels Gallerie di accesso laterale Erkundungsstollen Cunicolo esplorativo Rettungsstollen Verbindungstunnels Gallerie di collegamento NORDPORTAL INNSBRUCK Eisenbahnumfahrung Innsbruck PORTALE NORD INNSBRUCK Circonvallazione ferroviaria di Innsbruck

3.3 PROJEKTOPTIMIERUNGEN Ë SCHWERPUNKT AUSRÜSTUNG

Optimierungen zielen ab auf:

- Leichtere und jederzeit mögliche Zugänglichkeit zu den Anlagen
- Optimierung der Lebenszykluskosten der Anlagen
- Weitere Reduktion des Instandhaltungsaufwandes
- Verringerung instandhaltungsbedingter Betriebseinschränkungen
- Sicherstellung einer hohen Verfügbarkeit

3.3 PROJEKTOPTIMIERUNGEN Ë SCHWERPUNKT AUSRÜSTUNG

Festlegungen zum Oberbau

Oberbauart Feste Fahrbahn: Plattensystem

Aus der Sicht der Instandhaltung (Materialvorhaltung) sollte jenes Plattensystem zum Einsatz kommen, welches bereits im Streckennetz der ÖBB Verwendung findet.

Festlegungen zur Oberleitung

Deckenstromschiene anstelle

Kettenwerksoberleitung

3.3 PROJEKTOPTIMIERUNGEN Ë SCHWERPUNKT AUSRÜSTUNG

Verlegung von Anlagen und Kabelwegen in den Servicestollen

Die Verlegung umfasst alle Anlagen, welche nicht zwingend in den Fahrtunneln bzw. Querschlägen verbleiben müssen.

Vorteile:

- ✓ Die Zugänglichkeit der Anlagen ist ohne Beeinträchtigung des Bahnbetriebes jederzeit gegeben
- ✓ Die Organisation der Instandhaltung und Entstörung wird deutlich erleichtert (u.a. weniger Nachtschichten und geringerer Personalspitzenbedarf)
- ✓ Keine Bremsstaubbelastung

3.3 PROJEKTOPTIMIERUNGEN Ë SCHWERPUNKT AUSRÜSTUNG

Verlegung von Anlagen und Kabelwegen in den Servicestollen

Im Rahmen einer LCC-Untersuchung der TU Graz wurde nachgewiesen:

- ✓ Die Verfügbarkeit des BBT wird wesentlich erhöht
- ✓ Die Wirtschaftlichkeit des BBT wird maßgeblich gesteigert

3.3 PROJEKTOPTIMIERUNGEN Ë SCHWERPUNKT AUSRÜSTUNG

Bündeln von Anlagen (Errichtung von Hot Spots)

Konzentration der Anlagen, welche in den Fahrtunneln und Querschlägen verbleiben müssen, sind auf möglichst wenige Standorte (Hot Spots)

Zugang zu den Hot Spots erfolgt über die bestehenden Schächte zwischen dem Servicestollen und den Querschlägen zu den Hot Spots in den Fahrtunneln

Kurze Wege in den Fahrtunneln Minimierung der betrieblichen Einschränkungen

3.3 PROJEKTOPTIMIERUNGEN Ë SCHWERPUNKT AUSRÜSTUNG

Brandbekämpfungsanlagen Hochdruckwassernebelanlage

Reduktion des Instandhaltungsaufwandes gegenüber herkömmlicher Löschwasseranlage durch instandhaltungsarme Komponenten der Hochdruckwassernebelanlage

Fahrraumentwässerung

Reduktion des Instandhaltungsaufwandes gegenüber Rohrsystem mit Stetslauf (Drainagespülung) durch Entwässerungsrinne zwischen Gleistragplatten und Randweg

Galleris di Rase del Rasanuro Diceanci Desistorinei DUT SE

3.4 OPTIMIERTES INSTANDHALTUNGSKONZEPT

Die Entwicklung des Instandhaltungskonzept erfolgt aufbauend auf dem Projektstand 2013 und den betrieblichen Vorgaben:

- Das Instandhaltungskonzept für den BBT muss mit den Erfordernissen der Zulaufstrecken abgestimmt sein
- Die Instandhaltungsarbeiten sind so zu planen, dass jeweils nur ein Fahrtunnel betroffen ist
- Die Instandhaltungsfenster sind so festzulegen, dass eine Beeinträchtigung des Zugverkehres nur in verkehrsarmen Zeiten stattfindet
- Für die Dauer von Instandhaltungsarbeiten, welche mit betrieblichen Beeinträchtigungen verbunden sind, sind eigene Betriebskonzepte zu entwickeln.

Das Instandhaltungskonzept beinhaltet:

- Anlagenumfang
- " Instandhaltungsumfang
- Anzuwendende Instandhaltungsstrategie
- " Arbeitsmittel
- " Instandhaltungsfenster
- " Ressourcen
- " Abstimmung Zulaufstrecken, BBT und Bergstrecke

Gallaria di Rase del Remona Denner Desistonnel DUT SE

3.4 OPTIMIERTES INSTANDHALTUNGSKONZEPT

Das Instandhaltungskonzept beinhaltet:

- " Instandhaltungszentralen / -stützpunkte
- Tunnelleitstellen
- Anforderungen an die Brenner Bergstrecke und die Bestandsstrecken im Zulauf

Die erforderlichen Ressourcen, Einsatzzeiten und Sperrpausen sind im Rahmen eines ergänzenden Logistikkonzeptes vorzuschlagen. Deren endgültige Festlegung kann erst im Rahmen des Inbetriebnahmeprozesses unter Berücksichtigung des abzuwickelnden Betriebsprogrammes und der betrieblichen Belange erfolgen.

4. UMSETZUNG DER IN HINBLICK AUF DIE INSTANDHALTUNG ENTWICKELTEN MAßNAHMEN UND FESTLEGUNGEN

Umsetzung der Projektoptimierungen gemäß Punkt 3.1 mit Schwerpunkt Bauwerk:

> in den laufenden bzw. noch auszuschreibenden Baulosen.

Weitere, zusätzliche Maßnahmen:

- Anwendung des Weitspülverfahrens zur Reinigung der Tunneldrainagen in den Verbindungstunneln
- Spülfahrzeuge fahren über den Rettungsstollen Tulfes in die Sicherheitskorridore der Verbindungstunnel ein.

Drainagespülungen ohne Beeinträchtigung des Bahnbetriebes möglich

4. UMSETZUNG DER IN HINBLICK AUF DIE INSTANDHALTUNG ENTWICKELTEN MAßNAHMEN UND FESTLEGUNGEN

Umsetzung der Projektoptimierungen gemäß Punkt 3.3 mit Schwerpunkt Ausrüstung:

- in den laufenden bzw. noch auszuschreibenden Baulosen und in den Ausrüstungslosen
- " unter Berücksichtigung des unter Punkt 3.4 angeführten, optimierten Instandhaltungskonzeptes sowie
- weiterer, durchzuführender Life-Cycle-Betrachtungen im Rahmen interdisziplinären, gewerksübergreifenden Planungsleistungen für die bahntechnische Ausrüstung
- " unter Einbindung der Fachexperten der ÖBB in die Prüfund Genehmigungsabläufe des Planungsprozesses

