

ÖVG-KONGRESS FAHRSTROMANLAGEN HIGH SPEED PROJECTS IN ITALY - ELECTRIFICATION SYSTEM

9th October 2018

COLAS RAIL ITALIA

- On 1 August 2018 Colas Rail acquires the Italian rail electrification and infrastructure business of Alpiq
- The Company is now named Colas Rail Italia S.p.A

GROUP ORGANIZATION

COMPANY HISTORY

- Colas Rail Italia operates as an **international railway infrastructure contractor** offering specific technological solutions and developing multidisciplinary projects.
- One of the oldest and successful Italian Rail Electrification Companies over 30,000 km of electrified railway lines in Italy and overseas since the date of establishment (1926).
- One of the top turnkey railway electrification players in Italy first rank in Catenary Works.
- Multi-disciplinary capabilities for High Speed Lines and EPC Rail projects.
- In house Engineering Capabilities.

HIGH SPEED BACKBONE IN ITALY

Core Corridor - TENT-T Network

STALIA:

HS LINES IN OPERATION (STAGE ONE)

KEY FEATURES OF THE ITALIAN HIGH SPEED LINE

Design speed	200 260km/b
Design speed	300 – 360 km/h
Operational speed	300 km/h
Minimum curve	5,450 m
Max Gradient – surface	18‰
Max gradient – in tunnels	15‰
Distance between tracks	4.5 - 5 m
Max axle load	25 t
Rails	UIC 60
Distance between shunting / recovering points	48 km
Distance between cross-over points	24 km
Distance between power substations	50 km
Minimum headway	2 ' 30"
Design headway fro power supply	5 ′
Power supply (open line)	2x25kV-50 Hz
Power supply in junction area	3 kV dc

Full conformity of sub-systems with the European Technical Specifications for Interoperability the for main characteristics:

- **ELECTRIFICATION: 2x25kV**
- HV power supply 132-150kV
- SIGNALLING: ERMTS Level 2

SYSTEM INTEGRATOR FOR THE HS TECHNOLOGIES IN ITALY

Consorzio SATURNO,

Top railway's technology nationally and internationally

- Established in **1989**.
- Nominated subcontractor by Italian State Railways, the unique technological partner for the first phase of Italian HS design and build.
- Preliminary and construction engineering, supply, installation, system integration and commissioning.
- One leading partner for each technology.

Colas Rail Italia, Leading Technological Partner for

- Overhead Contact Line
- Overhead Transmission Lines
- Traction Power Substations (with other partners)

HIGH VOLTAGE POWER SUPPLY

HIGH VOLTAGE POWER SUPPLY

- HV power supply from public utility, 132 or 150kV
- Poles: Enel /Terna standard or compact type
- Original feeding strategy:
 Dedicated HV three-phase network
 Single circuit with back-up feedings from other nodes
- Actual choice:
 Point to point feeding from public utility network

Double circuit

High Speed projects in Italy Electrification system

2X25 KV POWER SUPPLY TRACTION SUBSTATIONS

2X25 KV POWER SUPPLY - TRACTION SUBSTATIONS

- Substations are spaced at intervals of **50 km**
- Three autotransformer stations, evenly spaced, are placed between them
- Substations and sectioning points are **equipped with a Command, Control, Protection and Diagnostic** controlling the whole equipment

2X25 KV POWER SUPPLY - TRACTION SUBSTATIONS

Main data

HIGH VOLTAGE LEVEL	kV 132-150
MEDIUM VOLTAGE LEVEL	kV 25
TPS TYPE	AIS/GIS
HV CONNECTION	V-Type
POWER INSTALLED	MVA 2x60
TRANSFORMER DUTY CICLE	MVA 60/90/120 Cont/15′/5′
MAX SHORT CIRCUIT AT HV BUSBAR	kA12,5
MAX SHORT CIRCUIT AT MV BUSBAR	kA 11
AUXILIARY TRANSFORMER	kVA 2x100 by substation kVA 30 back-up (by utility)
NUMBER OF FEEDER	4 Normal

PROTECTION SCHEMA (ANSI CODE)	Normal	Backup
HV INCOMING	50-51	
HV INCOMING -OUTGOING	21	50-51
TRANSFORMER * plus transformer onboard 97-99-26-49	87*	50-51
FEEDER	21	50-51
AUXILIAR TRANSFORMER	fuse	

2X25 KV POWER SUPPLY - TRACTION SUBSTATIONS

Main data

LAYOUT	m 90 x 70 - Typical fro AIS	m 50 x 30 - Typical for GIS
BUILDING	m 13 x 7	
SURFACE FINISHING	Asphalt	
COMMAND & CONTROL	Independent systemsSCADA for local controlRTUs for remote control	

2X25 KV POWER SUPPLY - BACK-UP AND EMERGENCY FEEDINGS

2X25 KV POWER SUPPLY - BACK-UP AND EMERGENCY FEEDINGS

HS Milano to Brescia – ATS Caravaggio

2X25 KV OVERHEAD CONTACT LINE

2X25 KV OVERHEAD CONTACT LINE

Main data

COLAS RAIL

CATENARY WIRE	1 x 120mm², Cu ETP, 16,25 kN
CONTACT WIRE	1 x 150mm², Cu ETP, 20 kN
DROPPERS	16mm ² Bz II (DIN 43138) conductive
FEEDER	1 x 307,7mm², aluminum- steel
AERIAL EARTH WIRE	1 x 147mm², aluminum
BURIED CURRENT COLLECTOR	1 x 95mm², Cu ETP
MAX SPAN LENGTH	60 m
MAX TENSION LENGTH	1400 m
INSULATED / UNINSULATED OVERLAP	4 spans configuration

5 spans configuration
 "split neutral section" configuration as per EN 50367
 interoperable according to TSI

2X25 KV - OVERHEAD CONTACT LINE

Main data

MASTS	LS series (double channel type)
PORTALS	lattice structures with different spans (up to 27 m)
CONNECTION OCL SUPPORTS - FOUNDATION	by means of anchor bolts
CANTILEVER	aluminum type
INSULATORS	fiberglass rod + silicone rubber
TENSIONING DEVICE	ratio 1:5; five pulleys in-line
MID POINT ASSEMBLY	 fiberglass rods connecting catenary wire and contact wire steel ropes connecting catenary wire and masts

2X25 KV - CONTACT LINE

- Typical cross section with LS masts
- Embankment/cutting
- Tunnel (single tube)
- Anchoringpoint

2X25 KV – 3KV AC/DC SYSTEM SEPARATION SECTION

- The system separation section allows the train to **switch its supply system**, while running and in a fully automatic way
- Electrical configuration: 25 kV approach section + 25 kV switched off section + earthed section + 3 kV switched off section + 3 kV approach section
- Approach sections: they can be switched off in case the automatic switching device doesn't work and the pantograph trespasses the "border" between the two systems; they are connected to "open line" sections by means of:
 - 25 kV: circuit breaker and transformer/separator
 - 3 kV: circuit breaker and filters

2X25 KV OVERHEAD CONTACT LINE UPGRADES TO IMPROVE PERFORMANCES AND MAINTAINABILITY

2X25 KV CONTACT LINE UPGRADES ON MATERIALS, COMPONENTS AND ARRANGEMENTS TO IMPROVE PERFORMANCES AND MAINTAINABILITY

- 1. Contact wire CuAg or CuMg
- 2. Earth wire TACSR
- 3. Cantilever OMNIA
- 4. Out of running wires takingup device

- 5. Tensioning device fall arresting device
- 6. Mid point assembly
- 7. Design speed increase,:
 - up to 360 km/h for 25kV lines
 - up to 300 km/h for 3 kV lines

1. CONTACT WIRE - CUAG OR CUMG

Contact wire – CuAg instead of CuETP

TARGET: better features in terms of creep behavior and maximum allowable temperature

Upper lobe of CuAg contact wire: two grooves

Contact wire – CuMg instead of CuETP

TARGET: better features in terms of creep behaviour, maximum allowable temperature and maximum breaking load -> contact wire tensioned at 30 kN (+50% against standard OCL)

Upper lobe of CuMg contact wire: three grooves

2. EARTH WIRE - TACSR INSTEAD OF ALUMINUM

TARGET: standardization with traditional 3kV lines and theft protection

MAIN FEATURES	
MATERIAL	Aluminun / steel
OVERALL NOMINAL SECTION	170 mm²
MASS	0,486 kg/m
BREAKING LOAD	23,35 kN

3. CANTILEVER - OMNIA

TARGET: maintenance improvement and standardization with traditional 3kV lines

4.OUT OF RUNNING WIRES – TAKING-UP DEVICE

TARGET: maintenance improvement

5. TENSIONING DEVICE – FALL ARRESTING DEVICE

TARGET: improved behavior in case of contact wire breakdown

6. MID POINT ASSEMBLY

TARGET: elasticity improvement

7. DESIGN SPEED INCREASE

Up to 300 km/h for 3 kV lines

- CuAg 0,1

COLAS RAIL

- contact wire tensioning increase to 22,5 kN
- Different configuration of overlaps (vertical arrangement)
- Damping droppers

Up to 360 km/h for 25kV lines

- CuMg 05
- tensioning increase for the wire to 30 kN
- New counterweight
- New arrangement for neutral section

High Speed projects in Italy Electrification system 30

THANK YOU.

- Colas Rail Italia S.p.A. Via Lampedusa 13/F 20141 Milano (IT) T. +39 02 89536,100
- giuseppe.ghilardi@colasrail.com

